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The viscosity of a poly-7-benzyl-L-glutamate sample (Jlfw = 208,000; Mw/Ma = 1.3) was measured as a function of shear­
ing stress, T (up to 106 dynes cm. ~2), in solutions in which the polypeptide exists either as rod-like a-helices (m-cresol) or as 
random coils (dichloroacetic acid). The non-Newtonian behavior above a critical T was markedly affected by the con­
figuration of t i e polypeptide. At the highest attainable T the intrinsic viscosity of the rod form was less than 1Ao of its 
value at T = 0, whereas the coil form under the same conditions retained more than 50% of its r = 0 viscosity. The 
theories of Kuhn and Kuhn, Kirkwood and co-workers and Saito for rigid rods or ellipsoids have been confirmed. A new 
method for determining the rotary diffusion constant and thereby the length of the rigid particles was thus developed. 
The curves relating y,p and r for the two forms at comparable concentrations crossed each other, indicating that the helices 
did not collapse under high stresses. The degree of polydispersity caused a broadening of the non-Newtonian region with 
respect to r. 

Introduction 
The theory of non-Newtonian viscosity for ellip­

soidal particles was first explicitly stated by Kuhn 
and Kuhn,2 using Jeffery's hydrodynamic treat­
ment3 and Peterlin's distribution function.4 I t 
was developed later with more precision by Saito5 

using the same model, and also by Kirkwood and 
his co-workers6a'b for rod-like particles. This prob­
lem has been fundamentally solved, since the equiva­
lence of the three theories has been demon­
strated by Saito and Sugita.7 Precise numerical 
solutions of Saito's equations have now been com­
puted by Scheraga8 in the same manner as that 
carried out previously for flow birefringence.9 As 
a result the intrinsic viscosity of rigid particles can 
be evaluated as a function of axial ratio, p, and a 
parameter a (a = D/8, D being the rate of shear 
and 9 the rotary diffusion constant), thus providing 
a new method for the study of the configuration of 
rigid particles in dilute solutions. As far as the au­
thor is aware, very few experiments, either using 
unextrapolated data (to zero concentration)10 or 
covering a narrow range of D,11 have been reported 
to test the validity of this theory for rigid particles. 

The dependence of viscosity of random coils on 
the rate of shear is a more complicated subject. 
In addition to hydrodynamic orientation which is 
opposed by Brownian motion, the flexible chains 
also undergo deformation when subjected to shear­
ing stress. Kirkwood has developed a rigorous 
general theory of viscosity.63'12 However, since 
the dependence of molecular configuration upon 
rate of shear is not known explicitly for flexible 
coils, only the undeformed equilibrium configura-
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tion was used, leading to Newtonian viscosity. 
Theoretical treatment by Rouse13 and Zimm14 using 
a free-draining model has yielded the result that 
the intrinsic viscosity of random coils is independent 
of the rate of shear. This, however, is not in ac­
cord with existing experimental findings. On the 
other hand, Bueche15 using apparently the same 
model has obtained a dependence of viscosity on 
rate of shear. The reason for this discrepancy has 
been discussed recently by Peterlin and Copic16 

who speculated that Bueche has neglected the com­
pensating effects of deformation and rotation of the 
coils. Pao17 using the same types of equations as 
Rouse has found that in the general case there is a 
dependence of viscosity on rate of shear unless all 
the relaxation times of the coils have nearly the 
same value. Very recently Zimm18 has indicated 
that a more general treatment of his theory would 
also result in a drop in intrinsic viscosity with in­
creasing rate of shear. Since at the present time 
theory cannot unequivocally predict the extent of 
this dependence, its elucidation will have to come 
from further experimental study. 

In this paper an experimental study of the non-
Newtonian viscosity of both rigid particles and 
flexible chains will be described. Poly-7-benzyl-
L-glutamate (PBLG) was chosen as a "model" sys­
tem for two reasons. First, almost all synthetic 
polymers are polydisperse, which from an experi­
mental point of view poses a serious obstacle in 
testing any theoretical predictions. PBLG, how­
ever, appears to be one of the few polymers which 
approach the ideal state of monodispersity, as evi­
denced by light scattering19 and osmotic pressure20 

studies. Secondly, the molecular properties of 
this polymer have been well characterized.19 The 
molecules exist as rigid, rod-like a-helices21 in sol­
vents, e.g., m-cresol, and as solvated random coils 
in good solvents, e.g., dichloroacetic acid (DCA). 
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T H I S JOURNAL, 76, 4493 (1954); P. Doty, J. H. Bradbury and A. M. 
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Thus with this polypeptide it will be possible to 
distinguish the difference in non-Newtonian vis­
cosity due to configurational changes and at the 
same time to test the validity of current theories 
of viscosity. 

Experimental Details 
A. Materials.—The PBLG sample (code no. 416) was 

a gift of Dr. E . R. Blout and Professor P . Doty. The 
method of preparation has been published elsewhere.22 

Its molecular weight is Mv = 208,000 and Mn = 160,0002° 
and its weight-average length (for rods) is 1430 A. 

The solvents m-cresol and dichloroacetic acid (Fisher 
Scientific Company) were redistilled under vacuum before 
use. 

B. Viscosity Measurements.—The flow curves were 
measured in a stainless steel capillary viscometer the details 
of which will be published elsewhere. This apparatus has 
been calibrated against a rotational and a cone-and-plate 
viscometer over a wide range of shearing stresses and also 
an Ubbelohde-type glass viscometer at very low rate of 
shear. The results from these instruments were all in very 
satisfactory agreement. 

1. Calculation of Viscosity.—The maximum shearing 
stress r at the capillary wall was calculated from the equa­
tion 

T = AP-R/2L (1) 

where Ap is the applied pressure, and R the radius and L the 
length of the capillary. The corresponding rate of shear D 
is calculated from the volume flow rate Q 

D = 4Q/wR° (2) 

The ratio of T to D gives the viscosity T> in poises. Equation 
2 is valid only for Newtonian flow (77 being independent of 
T or D). The corrected D is given as 

Da„ = Dexptl (n + 3)/4 (3) 

where n is defined as d log D/d log r at any chosen r or D.i3 

In this paper appropriate corrections were applied in the 
calculation of non-Newtonian viscosities. 

2. Determination of Intrinsic Viscosity.—Due to limita­
tions of the instrument the precision of all the measurements 
was maintained by using fairly concentrated solutions. The 
intrinsic viscosity [?;] at constant T was calculated according 
to Martin 's equation24 

log ( W C ) = log W + k [r,}C (4) 

which is known to hold well for moderately concentrated 
solutions. This is clearly illustrated in Fig. 1 where a 
series of the reduced viscosities of PBLG No. 416 at very 
low rate of shear are plotted according to equation 4 and 
also according to the well-known Huggins equation. The 
value of [77] in m-cresol was found to be 2.90 which was 
somewhat lower than 3.27 in dimethylformamide and 3.34 
in chloroform-formamide,19 possibly due to the solvent 
effect on the polypeptide particles. A similar plot for 
PBLG in DCA gave identical value of [77] = 1.19 with that 
reported in ref. 19, using Huggins' equation. All the in­
trinsic viscosities in this paper were determined a t constant 
shearing stress. Exhaustion of the polypeptide sample 
made it necessary to measure only two DCA solutions. 
Fortunately the concentration dependence of 17»P/C was 
much smaller in DCA than in m-cresol. For example, at 
T —• 0 the Martin's slope was 0.45 for the rods and 0.10 for 
the coils, so that the errors involved in the extrapolation 
to zero concentration of the coil form were accordingly re­
duced . 

Results 
In Figs. 2 and 3 are plotted the so-called flow 

curves (log rate of shear vs. log shearing stress) of 
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1.—Concentration dependence of the reduced viscosi-Fig, 
ties of PBLG No. 416 in w-cresol at 25.5°: O, Cannon-
Ubbelohde viscometer (r < < r c) ; • , stainless steel capillary 
viscometer (from Fig. 2). 

(22) E. R. Blout, R. H. Karlson, P. Doty and B. Hargitay, T H I S 
JOURNAI., 76, 4492 (1954); E. R. Blout and R. H. Karlson, ibid., 78, 
941 (1956). 

(23) See, for example, M. Reiner, "Deformation and Flow," H. K. 
Lewis, London, 1949. Equation 3 can also be transformed into 

w = *« (1 + d log W d log Dex)/[I + (3/4) 
d log 7?ex/d log Dex] ( 3a ) 

where the subscripts refer to experimental and corrected, values. Since 
both T and D vary along the line perpendicular to the capillary axis, 
many workers prefer to calculate the mean values of 17, T and D. It 
seems, however, desirable to use the true r and D at the capillary wall 
for the determination of -n, as the ratio of mean r to D does not necessar­
ily yield the corrected -q in the non-Newtonian region. 

2 3 
Log T. 

Fig. 2.—Flow curves of PBLG No. 416 in m-cresol at 25.5°. 

PBLG No. 416 in the form of rigid rods (in m-
cresol) and solvated random coils (in DCA). 
The viscosity appeared to be Newtonian (where 
the slope equals 1) at low shearing stress T followed 
by a distinct drop with increasing stress and ap­
proaching another Newtonian region at very high 
stress. For the sake of convenience each flow curve 
can thus be arbitrarily divided into three regions 
and the stress at which the viscosity drops is as­
signed as the critical rc. 

(24) A. F. Martin, Abst. 103rd American Chemical Society Meeting, 
April, 1942, p. 1-C; H. M. Spurlin, A. F. Martin and H. G. Tennent, 
J. Polymer Sd., I1 63 (1946). 
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Fig. 3.—Flow curves of PBLG No. 416 in dichloroacetic acid 
at 25.5°. 

Discussions 
A. General Considerations.—From the data 

in Figs. 2 and 3 the reduced viscosities (= T]SP/C) as 
a function of shearing stress can be calculated and 
the results are shown in Figs. 4a and 4b. The 
marked difference in non-Newtonian behavior be­
tween rigid rods and random coils is evident. I t 
is noted that the reduced viscosity of the rods 
dropped to less than one tenth its original value 
at the highest stress attainable. This was more 
drastic at higher concentrations. In contrast the 
reduced viscosity of the coils was only mildly re­
duced under the same conditions. More striking 
was the fact that the curves for the two forms at 
comparable concentrations crossed each other. 
Within the range of stress studied the intrinsic 
viscosity at constant stress fo]T of the rods dropped 
from 2.9 to about 0.2, whereas that of the coils 
dropped only from 1.2 to about 0.8. One is there­
fore led to believe that the a-helices remain stable 
even when subjected to the prevailing shearing 
stress (up to 5 X 104 dynes cm. - 2). Indeed the 
above result would have been inconceivable (even 
with due consideration of the solvent effects), if the 
intramolecular hydrogen bonds stabilizing the rod 
form had given way under stress. Strong evidence 
against any configurational change of the helices 
came also from the close agreement between theory 
and experiment for rod-shaped molecules as will 
be discussed in a later section. This confirmation 
of the theoretical prediction would be impossible if 
the rod form collapsed under external forces. 

Two other interesting features became apparent 
from the flow curves. First, the non-Newtonian 
viscosity became significant above a certain critical 
stress rc irrespective of concentration25 or tempera-

(25) In the literature r0 of many polymers have been reported 
to increase gradually with increasing concentration. See, for ex-

>-
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(b) log T. 
Fig. 4.—Reduced viscosities of PBLG No. 416 as a func­

tion of shearing stress. Data taken from Figs. 2 and 3. 
(b) is a portion of (a) on an enlarged scale. 

ture2 8 (within the ranges studied). The corre-
ample, W. Philippoff, "Viskositat der Kolloide," Dresden, 1942. 
Whether the polypeptide concentration in our studies was not high 
enough to show such difference or the polydispersity of those polymers 
caused such variation still awaits further investigations. 

(26) The flow curves of a 0.51% PBLG solution in m-cresol were 
measured at 15, 25 and 35° (data not shown here). Those of another 
0.54% solution were determined in an Ubbelohde viscometer from 25 
to 81° at shearing stress well below rc. The activation energy for flow, 
AE*, was about 10 kcal. as compared with 8.6 kcal. for the solvent. 
Slow degradation of the polypeptide began at temperatures above 80° 
as indicated by gradual drop in viscosity on standing. 
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sponding rate of shear Dc varied inversely with the 
concentration. This variation usually extended to 
several orders of magnitude.25 Thus the shearing 
stress appears to be a better parameter than the 
rate of shear in the characterization of non-New­
tonian viscosity. I t is interesting to note that in 
an Ostwald- or Ubbelohde-type viscometer meas­
urements are actually made under constant stress 
rather than constant rate of shear, since the average 
hydrostatic pressure head is kept virtually con­
stant. 

Secondly, in the case of rigid particles, the non-
Newtonian region covered about two to three dec­
ades of shearing stress, which as will be shown 
later agreed well with the theoretical prediction 
for a rigid rod. For polydisperse systems this re­
gion usually extended to more than four or five 
decades.26 Since each component has its charac­
teristic non-Newtonian behavior the composite 
curve of many components would conceivably re­
sult in a spreading of the non-Newtonian region. 
Thus some indication of the degree of polydisper-
sity can be obtained from the shape of the curves. 

B. Viscosity of Rigid Rods.—The viscosity 
increment v as a function of a (= D/Q) for various 
axial ratios p has been tabulated by Scheraga.8 

v, in turn, can be converted into the conventional 
intrinsic viscosity [r/ ] by the relation 

[7;] = Hm 
C-*o 

i> — Io = NVev/W0M (5) 

where i) and 770 are the viscosities of solution and sol­
vent, N is Avogadro's number, Ve and M are the 
equivalent hydrodynamic volume and molecular 
weight of the solute and [r)] is expressed in dl. per g. 
At any rate of shear (noting that D = r/rjo) 
MD/MD - 0 is simply equal to VD/VD = 0. (Nu­
merical values of these ratios are listed in the Ap­
pendix.) In Fig. 5 is shown the dependence of 
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Fig. 5.— Iv]D/\V]D = 0 as a function of rate of shear: lines, 
theoretical curves; circles, experimental values. 

MD on D for both the rod and coil forms. The 
solid line for rods represented a theoretical curve 
for PBLG No. 416 (9 = 500 sec.~l) in m-cresol.. 
Evidently the agreement between theory and ex­
periments (open circles) was as good as could be ex­
pected. In fact, our data have extended beyond 
Scheraga's computations (maximum a = 60). 
It thus appears that the validity of the theory for 
rigid rods or ellipsoids is completely confirmed. It 
is noted, however, that the minor degree of poly-
dispersity of the polypeptide could not be detected 
precisely. These details will be discussed in a fu­
ture publication. 

C. A New Method for Determining the Particle 
Length.—The agreement between theory and 
experiments of rigid rods or ellipsoids is indeed 
gratifying. I t leads to a new method for deter­
mining the shape of asymmetric particles. Like 
the flow birefringence technique, it gives a direct 
measurement of the rotary diffusion constant, 8.27 

The calculations are also essentially identical with 
those employed in the flow birefringence method. 
First, the axial ratio p of the ellipsoid is estimated 
from [T]]D =, 0 using Simha's equations for viscosity 
increment, v28'29 

v = £2/15 (In 2p - 1.5) + £75 (In 2p - 0.5) + 
14/15, £ » 1 (6a) 

for prolate ellipsoids and 
v = 16£715 arc tan p', p' » 1 (6b) 

for oblate ellipsoids, where p = a/b and p' = b/a. 
Secondly, from the experimental values of MDI 
[»?]D = O, the corresponding a's at constant p can 
be obtained using Scheraga's tables.8 For p values 
other than those listed in the Appendix, the a's can 
be obtained easily through interpolation or extrap­
olation. Thirdly, knowing a at any chosen rate 
of shear, one can immediately calculate 9 ( = D/a) 
and thereby the linear dimension of the particles 
according to Perrin's equations.31 

Qt = (3£27167n70a
3)[2 In (2a/b) - 1], a > 5b (7a) 

for prolate ellipsoids and 
0O = 3*r/32770Js, b » a (7b) 

for oblate ellipsoids, where a and b are the semi-
major and semi-minor axes, k is Boltzmann's con­
stant, T the absolute temperature and 770 the sol­
vent viscosity. 

This method has an additional advantage in its 
applicability to colored solutions, which are usually 
difficult to study with physical methods involving 
optical arrangements. In principle it also enables 
one to determine the molecular weight distribution 
of the system by comparing the experimental re­
sults with the theoretical curves for systems having 

(27) The relaxation time ra for rotation of the major axis a can be 
calculated from 9b about the minor axis b, by the simple reciprocal re­
lation Ta = l /29b. For PBLG Xo. 416 in m-cresol ra was found to be 
1 X 10"» sec. 

(28) R. Simha. / . Pkys. Chem., 44, 25 (1940); J. W. Mehl, J. L. 
Oncley and R. Simha, Science, 92, 132 (1940). 

(29) According to equation 5, [17] depends on both v and Fe.M 

However, as an approximation one can assume that the partial specific 
volume V of the solute equals NVe/M. As can be seen in the Ap­
pendix a small variation in p will not affect \I]D/Iy]D-I as a function 
of a significantly. 

(30) H. A. Scheraga and L. Mandelkern, T H I S JOURNAL, 75, 179 
(1953). 

(31) F. Perrin, J. Phys. Radium, [71 5, 497 (1934). 
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a known distribution function. One drawback of 
this method is the limited precision of the instru­
ment which makes it difficult to study very dilute 
solutions, thus causing possible complication in the 
extrapolation of 7j9p/C to zero concentration.32 

However, the present apparatus was so designed 
that it covered as wide a range of shearing stresses 
as possible. A more elaborate and sensitive instru­
ment covering a smaller range of stresses can be 
built to yield more precise viscosity measurements. 
Furthermore, since 0 is, as a first approximation, 
inversely proportional to the cube of t i e length, the 
error involved in the estimation of the length is 
only one third of that in the measurement of 0. 

For particles having low asymmetry and thereby 
large 8 in a given medium the non-Newtonian vis­
cosity will occur only at very high TC (and Dc). 

as glycerol or by lowering the solution tempera­
ture. This practice is well-known for slow bire­
fringence measurements. I t is noted, however, 
that T0 of a particular system is independent of sol­
vent viscosity and is also little affected by small 
changes in temperature,83 provided, of course, 
there is no configurational change under these con­
ditions. 

D. Viscosity of Random Coils.—The experi­
mental data for random coils in Fig. 5 should be 
considered with reservations. Due to limitations 
of the instrument, the calculated rjsp/C values were 
unavoidably scattered, especially since the solution 
viscosity was only 1.5 to 2.5 times that of the sol­
vent. Since only two concentrations were studied 
it was necessary to determine the intrinsic viscosi­
ties from the smoothed flow curves. One of the 

Appendix 

TABLE I 

Iv]D/M D = OOF PROLATE ELLIPSOIDS AS A FUNCTION OF a ( = D/Q) FOR VARIOUS AXIAL RATIOS p ° ' M 

a p - * 4 10 16 20 25 50 100 300 

0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
.25 0.9996 0.9993 0.9989 0.9990 0.9989 0.9989 0.9988 0.9988 
.50 .9979 .9971 .9960 .9959 .9958 .9955 .9955 .99"6 
.75 .9953 .9927 .9912 .9909 .9908 .9904 .9899 .9897 

1.00 
1.25 
1.50 
1.75 

2.00 
2.25 
2.50 
3.00 

3.50 
4.00 
4.50 
5.00 

6.00 
7.00 
8.00 
9.00 

10.00 
12.50 
15.00 
17.50 

20.00 
22.50 
25.00 
30.00 

35.00 
40.00 
45.00 
50.00 

60.00 

.9916 

.9874 

.9820 

.9762 

.9698 

.9629 

.9558 

.9408 

.9256 

.9106 

.8962 

.8825 

.8576 

.8357 

.8171 

.8008 

.7866 

.7583 

.7367 

.7208 

.7077 

.6970 

.6880 

.6738 

.6631 

.6547 

.6479 

.6429 

.6337 
' Calculated from the data 

.9868 

.9787 

.9707 

.9604 

.9501 

.9391 

.9274 

.9032 

.8782 

.8540 

.8305 

.8092 

.7689 

.7344 

.7049 

.6792 

.6566 

.6113 

.5747 

.5500 

.5282 

.5104 

.4949 

.4700 

.4503 

.4342 

.4203 

.4079 

.3872 

in ref. 8. 

.9846 

.9765 

.9669 

.9559 

.9441 

.9316 

.9187 

.8918 

.8642 

.8378 

.8120 

.7877 

.7439 

.7060 

.6733 

.6450 

.6203 

.5706 

. 5305 

.5037 

.4801 

.4606 

.4437 

.4165 

.3951 

.3779 

.3623 

.3487 

.3254 
6 p = a/b, where 

.9839 

.9756 

.9657 

.9546 

.9424 

.9294 

.9159 

.8881 

.8599 

.8323 

.8059 

.7810 

.7358 

.6966 

.6631 

.6338 

.6086 

.5575 

.5165 

.4890 

.4646 

.4446 

.4275 

.3997 

.3779 

.3600 

.3442 

.3304 

.3065 
a = semi 

.9837 

.9750 

.9649 

.9534 

.9409 

.9277 

.9139 

.8853 

.8563 

.8281 

.8011 

.7755 

.7291 

.6893 

.6548 

.6251 

.5992 

.5474 

.5053 

.4773 

.4526 

.4323 

.4149 

.3868 

.3646 

.3464 

.3305 

.3164 

.2921 

-major axis and b 

.9830 

.9734 

.9632 

.9508 

.9378 

.9242 

.9095 

.8795 

.8490 

.8196 

.7913 

.7647 

.7161 

.6742 

.6386 

.6080 

.5809 

.5271 

.4838 

.4549 

.4295 

.4088 

.3910 

.3623 

.3416 

.3213 

.3051 

.2907 

.2661 

.9823 

.9729 

.9619 

.9496 

.9362 

.9220 

.9070 

.8764 

.8452 

.8149 

.7859 

.7585 

.7091 

.6665 

.6300 

.5985 

.5712 

.5166 

.4728 

.4435 

.4177 

.3970 

.3790 

.3502 

.3276 

.3093 

.2931 

.2788 

.2543 
= semi-minor axis. " a 

.9820 

.9724 

.9612 

.9486 

.9348 

.9203 

.9051 

.8736 

.8418 

.8109 

.7813 

.7532 

.7027 

.6595 

.6223 

.5905 

.5628 

.5074 

.4634 

.4338 

.4080 

.3872 

.3692 

.3405 

.3181 

.2998 

.2837 

.2697 

.2454 

= D/e, where 
D = rate of shear and 9 ~ rotary diffusion constant. 

In such cases 8 can be reduced by increasing the sol­
vent viscosity through the use of an additive such 

(32) Likewise the uncertainty involved in the interpretation of 
flow birefringence data at finite concentrations raises some doubt 
about its applicability. 

(33) It can be shown easily that as concentration approaches zero 

Tci/Tco — TI/TQ 

irrespective of solvent viscosity. Here TCO and re are the critical values 
in different solvent media or in the same solvent at two temperatures 
Ta and T1. 
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}D/MD-

a(-
a l/P 

0.00 
.25 
.50 
.75 

1.00 
1.25 
1.50 

1.75 

2.00 

2.25 
2.50 
3.00 

3.50 
4.00 
4.50 
5.00 

6.00 
7.00 
8.00 
9.00 

10.00 
12.50 
15.00 
17.50 

20.00 
22.50 
25.00 
30.00 

35.00 
40.00 
45.00 
50.00 

T A B L E II 

: o OF OBLATE ELLIPSOIDS AS A FUNCTION 

D/B) FOR VARIOUS AXIAL RATIOS 1/p" 

->• 1 0 

1.0000 
0.9995 
.9978 
.9949 

.9911 

.9863 

.9806 

.9744 

.9674 

.9601 

.9524 

.9363 

.9199 

.9038 

.8882 

.8733 

.8458 

.8216 

.8002 

.7813 

.7645 

.7296 

.7007 

.6799 

.6613 

.6455 

.6315 

.6084 

.5895 

.5734 

.5596 

.5474 

25 

1.0000 
0.9995 
.9978 
.9945 

.9901 

.9846 

.9786 

.9714 

.9632 

.9549 

.9467 

.9285 

.9098 

.8917 

.8741 

.8576 

.8268 

.7993 

.7757 

.7544 

.7356 

.6960 

.6636 

.6399 

.6190 

.6009 

.5849 

.5580 

.5362 

.5174 

.5010 

.4862 

SO 

1.0000 
0.9992 
.9972 
.9940 

.9895 

.9838 

.9773 

.9699 

.9619 

.9531 

.9443 

.9255 

.9064 

.8877 

.8695 

.8521 

.8203 

.7921 

.7671 

.7452 

.7255 

.6849 

.6510 

.6266 

.6050 

.5865 

.5697 

.5421 

.5188 

.4997 

.4827 

.4673 

100 

1.0000 
0.9994 
.9973 
.9939 

.9893 

.9837 

.9770 

.9695 

.9612 

.9525 

.9433 

.9243 

.9049 

.8857 

.8672 

.8495 

.8171 

.7884 

.7631 

.7408 

.7210 

.6796 

.6450 

.6203 

.5981 

.5793 

.5624 

.5342 

.5111 

.4912 

.4740 

.4582 

300 

1.0000 
0.9995 
.9971 
.9937 

.9893 

.9834 

.9766 

.9693 

.9610 

.9517 

.9424 

.9234 

.9039 

.8843 

.8658 

.8477 

.8150 

.7858 

.7604 

.7379 

.7179 

.6759 

.6408 

.6159 

.5935 

.5744 

.5573 

.5290 

.5056 

.4860 

.4686 

.4526 

60.00 .5272 .4613 .4411 .4316 .4258 

" See the footnotes in Table I. 

main purposes of this paper was, however, to show 
clearly the difference in non-Newtonian behavior 
between rigid rods and random coils rather than 
to present the precise [??] values of the coils. 
Nevertheless, it is reasonably certain that with in­
creasing shearing stress the coils retained one-half 
of their h]o = o value under the conditions em­
ployed. Furthermore, the [V]D/[V]D = o ratios 
appeared to level off gradually at the highest at­
tainable shearing stresses. 

As has been mentioned earlier, the theories for 
random coils are still controversial. Our results 
in Figs. 3, 4 and 5 clearly indicate a drop in fo] 
with increasing shearing stress, which does not 
agree with the theories of Kirkwood, Rouse and 
Zimm. On the other hand, Bueche's theory for 
free draining coils predicts a drastic decrease in [rj] 
as a function of -Dn34 (Fig. 5) which is also not in 
accord with our experimental data. To account 
for the dependence of [TJ] on rate of shear Zimm14 

has suggested that the non-Gaussian behavior or the 
stiffness of polymer chains could result in a devia­
tion from the ideal case where rotations between 
chain segments are completely free. Some ex­
perimental evidence in support of Zimm's explana­
tion can be found in the recent work by Philip-
poff36 and Kuroiwa.38 The estimated [T?]D=„/ 
[??]z5 = oof a polyisobutylene (mol. wt. « 106) from 
Philippoff's data was about 1/1.6. In the second 
case [rj] of one polystyrene fraction (mol. wt. = 
3.2 X 106) varied from 4.3 at Z) = 0 to 4.0 at D = 
2000 sec."1, a drop of less than 10%. The [V]-D 
curve appeared to level off, even though the range 
covered was rather limited. These two polymers 
are considered among the class of highly flexible 
chains and their intrinsic viscosity was only slightly 
reduced with increasing rate of shear. The de­
tails of the theories of Pao17 and Zimm18 are not 
yet available, so that it is difficult to compare our 
experimental data with theory. 
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(34) n may be considered as a characteristic relaxation time of the 
polymer particles (not to be confused with the symbol for shearing 
stress T) and is denned as 

n = 12Wc - o VOM/T'RT (8) 

Here M is the molecular weight of the polymer and IJO the solvent 
viscosity. The dimension of [??]z)=8 is ml. g . - 1 rather than the cus­
tomary dl. g.-i. For PBLG No. 416 TI was found to be 7.Cl X 10~» 
sec. 

(35) W. Philippoff, private communication. 
(36) T. Kuroiwa, Bull, Chem. Soc. Japan, 29, 164, 962 (1956). 


